This image shows Michael  Böhm

Michael Böhm

Dr. Ing.

Subproject Leader
Institut für Systemdynamik

Contact

Waldburgstraße 19
70563 Stuttgart
Deutschland

Subject

  1. 2022

    1. L. Blandini et al., “D1244: Design and Construction of the First Adaptive High-Rise Experimental Building,” Frontiers in Built Environment, vol. 8, Jun. 2022, doi: 10.3389/fbuil.2022.814911.
    2. L. Blandini et al., “Der Demonstrator D1244: das weltweit erste adaptive Hochhaus,” Bautechnik, Jan. 2022, doi: 10.1002/bate.202100065.
    3. S. Dakova, J. L. Heidingsfeld, M. Böhm, and O. Sawodny, “An Optimal Control Strategy to Distribute Element Wear for Adaptive High-Rise Structures,” Atlanta, USA, Jun. 2022.
    4. J. Heidingsfeld, O. Böckmann, M. Schäfer, M. Böhm, and O. Sawodny, “Low Order Hybrid Model for Control Design of an Adsorption Facade System for Solar Cooling,” Triest, Italy, Aug. 2022.
    5. A. Rentz et al., “A Hydroactive Facade for Rainwater Harvesting and Evaporative Cooling: Dynamic Modeling and Simplification for Application in Optimization-based Long-term Building Operation Strategy,” Triest, Itlay, Aug. 2022.
    6. S. Steffen, A. Zeller, M. Böhm, O. Sawodny, and L. Blandini, “Actuation concepts for adaptive high-rise structures subjected to static  wind loading,” Enginieering Structures, vol. 267, no. 114670, Art. no. 114670, Sep. 2022, doi: 10.1016/j.engstruct.2022.114670.
    7. J. Stiefelmaier, A. Gienger, M. Böhm, O. Sawodny, and C. Tarín, “A Bayesian Approach to Fault Diagnosability Analysis in Adaptive Structures,” Sep. 2022.
    8. S. O. Weber, M. Oei, M. Linder, M. Böhm, P. Leistner, and O. Sawodny, “Model predictive approaches for cost-efficient building climate control with seasonal energy storage,” Energy and Buildings, vol. 270, p. 112285, Sep. 2022, doi: 10.1016/j.enbuild.2022.112285.
    9. A. Zeller, M. Böhm, and O. Sawodny, “A Genetic and a Greedy-Genetic Algorithm for Steady-State Disturbance Compensability Actuator Placement for Adaptive Structures,” presented at the American Control Conference (ACC) 2022, Atlanta, USA, 2022.
  2. 2021

    1. T. Burghardt et al., “Anforderungsermittlung für adaptive Stützen und Aussteifungselemente in Tragkonstruktionen,” Konstruktion, vol. 73, no. 10, Art. no. 10, 2021, doi: 10.37544/0720-5953-2021-10-64.
    2. T. Burghardt et al., “Anforderungsermittlung für adaptive Stützen und Aussteifungselemente in Tragkonstruktionen,” Konstruktion, vol. 73, no. 10, Art. no. 10, Oct. 2021, doi: 10.37544/0720-5953-2021-10-64.
    3. S. Dakova, J. L. Wagner, A. Gienger, C. Tarín, M. Böhm, and O. Sawodny, “Reconfiguration Strategy for Fault-Tolerant Control of High-Rise Adaptive Structures,” IEEE Robotics and Automation Letters, vol. 6, no. 4, Art. no. 4, 2021.
    4. T. Kleine, J. L. Wagner, M. Böhm, and O. Sawodny, “Optimal actuator placement and static load compensation for a class of distributed parameter systems,” at - Automatisierungstechnik, vol. 69, no. 9, Art. no. 9, Sep. 2021, doi: 10.1515/auto-2021-0027.
    5. W. Sobek et al., “Adaptive Hüllen und Strukturen,” Bautechnik, vol. 98, no. 3, Art. no. 3, Feb. 2021, doi: 10.1002/bate.202000107.
    6. W. Sobek et al., “Adaptive Hüllen und Strukturen,” Bautechnik, vol. 98, no. 3, Art. no. 3, Mar. 2021.
    7. J. Stiefelmaier, A. Gienger, M. Böhm, O. Sawodny, and C. Tarín, “Sensor Placement for Qualitative Fault Diagnosability in Large-Scale Adaptive Structures,” Nov. 2021.
    8. J. Wagner, S. Dakova, M. Böhm, and O. Sawodny, “Approximativ linearisierende Eingangstransformation zur aktiven Schwingungsdämpfung adaptiver Tragwerke mit druckschlaffen Elementen,” Anif, Österreich, Sep. 2021.
  3. 2020

    1. M. Böhm et al., “Input modeling for active structural elements – extending the established FE-Workflow for modeling of adaptive structures,” in IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Jul. 2020, pp. 1595--1600. doi: 10.1109/AIM43001.2020.9158996.
    2. M. Böhm et al., “Modellierung aktiver Strukturelemente als Erweiterung zum klassischen Workflow der FE-Analyse,” 2020.
    3. A. Gienger, A. Ostertag, M. Böhm, B. Bertsche, O. Sawodny, and C. Tarín, “Data-based Distributed Fault Diagnosis for Adaptive Structures using Convolutional Neural Networks,” Unmanned Systems, 2020.
    4. A. Gienger, J. Wagner, M. Böhm, O. Sawodny, and C. Tarín, “Robust Fault Diagnosis for Adaptive Structures with unknown Stochastic Disturbances,” IEEE Transactions on Control Systems Technology, 2020.
    5. M. Oei, J. Guenther, M. Böhm, S. Park, and O. Sawodny, “A Bilinear Approach to Model Predictive Control for Thermal Conditioning of Adaptive Buildings,” Berlin, Germany, 2020. doi: 10.1016/j.ifacol.2020.12.1593.
    6. J. Wagner, M. Böhm, and O. Sawodny, “Decentrlized structural control using Craig-Bampton reduction and local controller design,” Buenos Aires, Feb. 2020.
    7. J. Wagner, A. Gienger, P. Arnold, C. Tarin, O. Sawodny, and M. Böhm, “Optimal Static Load Compensation for Nonlinear Adaptive Structures,” Paris, online, Jul. 2020.
    8. J. L. Wagner et al., “Optimal Static Load Compensation with Fault Tolerance in Nonlinear Adaptive Structures under Input and State Constraints,” Frontiers in Built Environment, vol. 6, p. 93, 2020.
    9. J. L. Wagner and M. Böhm, “Decentralized Control Design for Adaptive Structures with Tension-only Elements,” Berlin, Germany, Jul. 2020.
    10. J. L. Wagner et al., “Optimal Static Load Compensation with Fault Tolerance in Nonlinear Adaptive Structures under Input and State Constraints,” Frontiers of Built Environment, 2020, doi: 10.3389/fbuil.2020.00093.
    11. A. Warsewa et al., “Self-Tuning State Estimation for Adaptive Truss Structures Using Strain Gauges and Camera-Based Position Measurements,” Mechanical Systems ans Signal Processing (MSSP), Mar. 2020.
    12. A. Warsewa, J. L. Wagner, M. Böhm, O. Sawody, and C. Tarín, “Decentralized LQG control for adaptive high-rise structures,” Berlin, Germany, Jul. 2020.
    13. A. Warsewa, M. Böhm, O. Sawodny, and C. Tarín, “A port-Hamiltonian appproach to modeling the structural dynamics of complex structures,” Applied Mathematical Modelling (APM), Aug. 2020, doi: 10.1016/j.apm.2020.07.038.
    14. A. Warsewa, J. L. Wagner, M. Böhm, O. Sawody, and C. Tarín, “Networked decentralized control of adaptive structures,” Journal of Communications, Jun. 2020, doi: 10.12720/jcm.15.6.496-502.
  4. 2019

    1. M. Böhm, J. Wagner, S. Steffen, W. Sobek, and O. Sawodny, “Homogenizability of Element Utilization in Adaptive Structures,” Aug. 2019.
    2. J. Wagner, M. Böhm, and O. Sawodny, “Nonlinear Modeling and Control of Tension-only Elements in Adaptive Structures,” Paris, Jul. 2019.
    3. J. Wagner, K. Schmidt, M. Böhm, and O. Sawodny, “Optimal Actuator Placement and Static Load Compensation for Euler-Bernoulli Beams with Spatially Distributed Inputs,” Wien, Sep. 2019.
    4. S. Weidner et al., “The integration of actuation concepts and adaptive elements into an experimental high-rise building,” in 7th International Conference on Structural Engineering, Mechanics and Computation (SEMC), September 2-4, 2019, Cape Town, 2019, pp. 1022–1026.
  5. 2018

    1. J. Wagner et al., “On steady-state disturbance compensability for actuator placement in adaptive structures,” at - Automatisierungstechnik, 2018, doi: 10.1515/auto-2017-0099.
    2. J. Wagner, M. Böhm, and O. Sawodny, “Modellbasierte Aktorplatzierung für einen verteilten Eingriff am Euler-Bernoulli Balken zur optimalen statischen Kompensation,” Anif, Österreich, Sep. 2018.
    3. J. Wagner et al., “Tragwerk mit adaptiven Aussteifungselementen.” 2018.
    4. J. Wagner, M. Böhm, and O. Sawodny, “Model-Based Control of Integrated Fluidic Actuators for Adaptive Structures,” New York, Jul. 2018.
    5. J. Wagner et al., “Adaptives Tragwerk mit vollintegrierter Aktorik.” 2018.
    6. S. Weidner et al., “The implementation of adaptive elements into an experimental high-rise building,” Steel Construction, vol. 11, no. 2, Art. no. 2, 2018, doi: 10.1002/stco.201810019.
  6. 2017

    1. M. Heidingsfeld, P. Rapp, M. Böhm, and O. Sawodny, “Gramian-based Actuator Placement with Spillover Reduction for Active Damping of Adaptive Structures,” in IEEE International Conference on Advanced Intelligent Mechatronics, Munich, Germany, Jul. 2017, pp. 904--909. doi: 10.1109/AIM.2017.8014133.
    2. P. Rapp, M. Heidingsfeld, M. Böhm, O. Sawodny, and C. Tarín, “Multimodal Sensor Fusion of Inertial, Strain, and Distance Data for State Estimation of Adaptive Structures using Particle Filtering,” in IEEE International Conference on Advanced Intelligent Mechatronics, Munich, Germany, Jul. 2017, pp. 921--928. doi: 10.1109/AIM.2017.8014136.
    3. J. Wagner, M. Heidingsfeld, M. Böhm, and O. Sawodny, “Gramian-Based Actuator Placement for Static Load Compensation in Adaptive Structures,” Stuttgart, Germany, Oct. 2017. doi: 10.18419/opus-9334.

Oktober 2017, Promotion zum Dr.-Ing., Dissertationsthema: "Strategies for Disturbance Compensation at Large Telescopes"

Technische Kybernetik (2006 – 2011), Anwendungsfach „Automatisierung in der Energietechnik“ im Hauptstudium, Univ. Stuttgart, Abschluss: Dipl.-Ing.

2011 – heute Wissenschaftlicher Mitarbeiter am Institut für Systemdynamik, Universität Stuttgart

To the top of the page